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particle with others, statistical moments of the local ensemble have to be evaluated, but
unlike in molecular dynamics simulations or DSMC, no collisions between computational
particles are considered. In addition, a novel integration technique allows for time steps
independent of the stochastic time scale.

The stochastic model represents a Fokker-Planck equation in the kinetic description,
which can be viewed as an approximation to the Boltzmann equation. This allows for a rig-
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Fokker-Planck equation orous investigation of the relation between the new model and classical fluid and kinetic
PDF methods equations. The fluid dynamic equations of Navier-Stokes and Fourier are fully recovered
Monte-Carlo method for small relaxation times, while for larger values the new model extents into the kinetic
Stochastic differential equations regime.

Numerical studies demonstrate that the stochastic model is consistent with Navier-
Stokes in that limit, but also that the results become significantly different, if the conditions
for equilibrium are invalid. The application to the Knudsen paradox demonstrates the cor-
rectness and relevance of this development, and comparisons with existing kinetic equa-
tions and standard solution algorithms reveal its advantages. Moreover, results of a test
case with geometrically complex boundaries are presented.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, a new stochastic modeling approach for monatomic gas flow is presented. The motivation is to improve our
understanding regarding the applicability of the Navier-Stokes equation in situations with extreme gradients, e.g. in the
presence of very strong shocks or micro-scale geometries. In these situations, lack of sufficient collisions between particles
leads to strong non-equilibrium and the assumptions of the Navier-Stokes model are violated.

One way to address the validity of the Navier-Stokes equations is to use the concept of irreversible thermodynamics,
where transport equations for the molecular stress tensor and heat flux are considered. This approach yields extended fluid
dynamic models, which are successful, but still limited to moderate non-equilibrium, see e.g. [28,30] and references therein.
Another approach is to use the equations of kinetic gas theory from which the equations for fluid- and thermodynamics can
be derived. In general, the basis is provided by the Boltzmann equation, which is derived for rarefied gases and describes the
evolution of the distribution function for particle velocities. The Boltzmann equation can be used in numerical computations
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by direct discretization. However, due to the high dimensionality of the distribution function and the complexity of the col-
lision operator, the enormous computational requirements are a limiting factor.

Computational costs can be reduced by considering simplified models that replace Boltzmann’s equation like the BGK
model, see [20]. Still, in the BGK model an equation for the distribution function needs to be discretized. However, the col-
lision operator is largely simplified. Another pragmatic procedure to solve the Boltzmann equation is given by the direct sim-
ulation Monte-Carlo (DSMC) method. In DSMC, particle paths and velocities are computed and local pair-wise collisions of
the particles are introduced in a stochastic way. This method is successful, but only applicable for steady high speed flow
problems; see [5].

In this paper, the approximation of the Boltzmann collision operator by a Fokker-Planck model, which was already pub-
lished by Kirkwood [14,15] for liquids and by Heinz [9,10] for one-atomic gas, is analyzed and compared with other approx-
imations. This Fokker-Planck model is proposed as an approach for monatomic gas flow, which may be viewed at the same
time as a stochastic model for molecular motion. Moreover, a consistent and efficient numerical solution algorithm is de-
vised. The mass density function (MDF) of molecules in the joint physical-velocity-space is consistently approximated by
a cloud of stochastic particles, where the particle number density represents the mass density. Since the evolution of the
particle positions and velocities by stochastic differential equations (SDEs) is relatively cheap, a very efficient and flexible
numerical method can be derived. An important component is a novel time stepping scheme to integrate the SDEs for par-
ticle positions and velocities independent of the relaxation time. Note that this is crucial to also deal efficiently with very low
Knudsen number flows, where the relaxation time (which scales linearly with the mean free path length) is typically much
smaller than the time step size allowed by a simple CFL criterion. The method also features exact preservation of fluctuation
energies. Since this particle algorithm is a consistent solution method for the Fokker-Planck equation, it can be employed to
rigorously investigate the Fokker-Planck model in the context of kinetic gas theory. We would like to clarify that the goal of
our method is to provide an approximation to the Boltzmann equation in a similar way as DSMC does.

It is easy to recognize the analogy of the stochastic model with probability density function (PDF) modeling of turbulent
flows. The advantage of PDF methods is that both, convection and turbulence-reaction interaction are represented exactly
without modeling assumptions [24]. They have successfully been applied in modeling several chemically inert [2,7,21]
and reactive [22,18,26] flows. In terms of solution algorithms, particle methods are usually preferred, which is due to the
high dimensionality of the PDF transport equation [13,12,25]. Although conceptually similar, here the algorithmic task is dif-
ferent. On one hand, there is no mean pressure coupling and on the other hand kinetic energy is conserved. In this paper we
present a highly accurate, energy conserving particle tracking scheme, which is novel. Moreover, a consistent formulation of
isothermal wall-boundary conditions is devised.

The strategy of this paper is the following: In Section 2, we formulate fundamental conditions for approximative models
of Boltzmann’s collision operator and derive the Fokker-Planck operator as such a model. Then, the accuracy of this model is
investigated by studying the evolution equations of the fluid quantities induced by the model and by comparison to Boltz-
mann. After establishing the model, we transform the Fokker-Planck equation into stochastic differential equations for par-
ticle paths. Section 3 presents the discussion of the relation to other stochastic particle models and the comparison to DSMC.
Section 4 derives the numerical method by exact integration of the stochastic equations with frozen coefficients for a full
time step. Algorithmic details of how to extract and interpolate averaged quantities are given. In Section 5, we present
numerical experiments that verify the preservation properties of the new method. Realistic cases like channel flow and
two-dimensional external flow are investigated to demonstrate the capabilities of the new model.

2. Kinetic description of non-equilibrium gases

As the basis of our reasoning we assume that the statistics of particles in a gas can be described by the mass density func-
tion FaV, x, tb ¥4 pdx, tbf6V; x, tb, where p is the gas density (particle number density times the single particle mass m) and f
the probability density function (PDF) of the molecular velocity M at location x and time t. In equilibrium, the molecular
velocity PDF is given by the Maxwell distribution F,

p 8V, U’
1,
ke P < 2kT/m )’

which is constructed from the gas density p, the gas velocity U (mean molecular velocity) and the gas temperature T. The
particles have mass m and k is the Boltzmann constant. Density, velocity and sensible energy es ¥4 1.5kT/m follow from
the mass density function (MDF) F by integration, i.e.

<p7 PU,Pes D%PU2> Ya /3 WeonsF dV Ya /3 W cons F mdV d2p
JR JR
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with the weights Weons ¥4 61,V7%V2D. We define the fluctuation velocity of the particles by u% V  U. With the relation
es ¥43/2 k/m T we restrict ourselves to monatomic gases. In the following, we will also use the negative stress tensor p;
and the heat flux g; defined by

Dy 1/4/ uyFdV and g; 1/4/ 1u,»ukudeV 83b
. w3 2
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for any MDF F. Note that Einstein’s summation convention is used throughout this paper. For abbreviation we write for the
symmetric tracefree (deviatoric) part of a tensor Ay; ¥4 %éA,»j b Ajip %Akké,»j, where §; is the Kronecker symbol.

2.1. Kinetic equations

The evolution of F follows the kinetic equation

OF | OFF
OXi 8‘/,'

where F is an external force, e.g. gravity. For simplicity, in this paper F is considered independent of V. The left hand side of
this equation describes the non-interacting free flight of the particles by means of a Liouville-operator for F. The major mod-
eling of the gas enters through the right hand side S8F b, which represents the particle interactions, i.e. the collisions. We for-
mulate two fundamental properties of a general collision operator. Both are related to equilibrium, i.e.

OF
PV Y, SOFD, 34b

/ Y eonsSSFPdV % 0 for any F  and a5p
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SoFP Y40 ) F % Fy. a6b

Property (5) states that mass, momentum and energy are conserved during collisions, and property (6) states that a distri-
bution is Maxwellian (in equilibrium), if it is not changed by the collisions. The modeling task of kinetic theory is to find an
accurate and realistic expression for S.

Boltzmann’s famous Stosszahlansatz leads to a collision operator of the form

seB"”Z”an%% / g bSF"VPF%V b FaVPF 3V, pedbdedV §7p
RS

that describes the details of binary collisions in a dilute gas. Inside S the MDFs F and F' of the velocities before and after
a collision are evaluated; g % jV  V4j is the relative velocity, b the collision parameter and ¢ 2 40,27 a collision angle. For
details of this operator, see for example the book [6]. The Boltzmann equation can be solved numerically, however, full scale
simulations are extremely expensive due to the discretization of the x V t phase space and since the collision operator
(7) has to be evaluated at every point of the phase space. It can easily be checked that the two properties (5) and (6) hold for
the Boltzmann collision operator.

Many analytical and numerical evaluations demonstrate that the Boltzmann equation (4) with (7) indeed describes non-
equilibrium gas dynamics accurately for a wide range of scenarios including rarefied gases and strong shocks. Extensions
exist for very dense fluids and real gas effects. In this paper, we will consider the description given by the Boltzmann equa-
tion as a benchmark for our modeling approach of non-equilibrium gas flow.

To efficiently simulate non-equilibrium gases, the collision operator S is typically replaced by an expression simpler than
the Boltzmann operator %%, [deally, such a model operator mimics as many properties of a realistic collision operator as
possible, while still allowing efficient computations. First at all, it is natural to require that the two properties (5) and (6) are
fulfilled. Second, if S®°®" is the benchmark, it is also reasonable to aim for a match of further stochastic moment, i.e. that

/ WSsFbdV Vi / PSP sE pdy 38b
R3 R3

for integration weights ¥ ¥ oV;V;, ViV;Vy, ..., V; Vi, VP of monomials of increasing degree. This property guarantees that
the evolution equations of the model for the N moments [; ¥FdV are identical to the evolutions implied by the Boltzmann
equation. Other conditions may include the existence of an entropy and other mathematical properties.

2.2. Collision models
The most popular collision model is the so-called BGK model [4]. This model can be derived from the Boltzmann operator
by assuming that the post-collision velocities follow a Maxwell distribution, which allows to compute the integral in Eq. (7)

explicitly. We find

SECaED

Fy  Ebp, 39p
TBGK

which represents a relaxation towards the equilibrium F  with relaxation time 7gk. Since F; is an expression depending on
density, velocity and temperature, S is still a non-linear integral operator for F, although it appears as a simple expres-
sion. Obviously, S satisfies the equilibrium conditions (5) and (6). BGK has been used for many numerical computations,
e.g. in [20].

The Boltzmann operator (7) can also be significantly simplified, if we assume small velocity changes through collisions.
Note, that this assumption is to some extent similar to the assumption of BGK. With the assumption of small velocity
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changes, the evaluation of the post-collision velocities in (7) can be linearized and with additional equilibrium assumptions
the integrals become computable explicitly. For details, see [6]. The result is the Fokker-Planck operator

sy, O (1 o ‘ > 2e;s
SToFp /48—W<T—W6V, U,DF) DW<ﬁF> 010p
depending explicitly on the gas velocity U, energy e; and a relaxation time tgp. The Fokker-Planck operator can also be de-
rived directly from particle motion, in particular for Brownian motion. However, here we want to stress the tight relation to
the Boltzmann equation, i.e. we will focus on $* as a Boltzmann model.

The main reason for replacing S by S is the possibility to use highly efficient numerical methods based on the sto-
chastic description (see below). Already [6] states that expression (10) exhibits desirable properties to be used as a collision
model. First of all, it satisfies the conditions (5) and (6), i.e. it obeys the conservation laws and ensures relaxation towards the
equilibrium distribution F ;. Similarly to S, it is not a linear operator, since velocity and energy appear in Eq. (10) as inte-
grals of F. However, in contrast to ¥, the non-linearity is quadratic, which is also the case for S, Moreover, it can be
shown that the Fokker-Planck operator is positive definite and represents a relaxation similar as Eq. (9) for small deviations
F  Fu.

To demonstrate differences between the collision operators, we investigate property (8) for the moments of momentum
and energy flux

ij Ya /3 LlﬂljSéFDdV and P; Ya /3 %uiukukSEﬁdeV, 011p
JR R

respectively, which will be essential for the consistency with fluid dynamics. We find
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where the Boltzmann result has been computed analytically for the interaction potential ®3rp ¥ % r 4 (Maxwell molecules).
The coefficient o is explicitly given by o ¥4 4.11104/k/m. All models are linear in the pressure deviator p,; and the heat flux
q;; differences are present in the factors, however. Obviously, ap/m has to be identified with an inverse relaxation time
Thoitz V4 80tp/mb 1. Since the relaxation times in the BGK and Fokker-Planck models are free to be chosen at this time, they
can be fixed by Tack ¥ Tpoi, and Tep ¥4 2Tgor,. With this choice Py exhibits the same proportionality factor for all models. How-
ever, the factor for P; differs. This leads to different Prandtl numbers for the different models.

2.3. Consistency with fluid dynamics
The consistency of kinetic models with fluid dynamics have been extensively studied, e.g., in the text books [6,27]. For the

case of Fokker-Planck see also [10].
The transfer equations for W, yield the conservation laws for mass, momentum and energy, i.e.

ap, 0pU;,

atb % Y4 0, 813p
opU; , 0pU;U; 8pij1 4

o P ox P 7PE 5140
apes , dpUes  0q; au; |

ot P 7o, Pax PP, "0 5150

Egs. (13)-(15) do not depend on the details of the collision model due to the conservation property (5). Hence, all reasonable
kinetic models will reproduce the same conservation laws of continuum physics.

The conservation laws form the field equations for péx, tb, Udx, tb and edx, tb. However, Egs. (14) and (15) are unclosed due
to the appearance of the unknown molecular stress p; and heat flux g;. Regarding the molecular stress py;, the closure prob-
lem can be reformulated by splitting p; into an isotropic part ps; and a deviatoric part 7y, i.e. p; ¥4 pdy p 7, where p % p;;/3.
Comparison with the sensible energy e; ¥ 0.5p;;/p leads to

p %%pes. 816b

For perfect gases we are familiar with the equation of state p % 8y  1bpes, where y is the ratio of specific heats. Eq. (16) re-
veals that y ¥4 5/3, which is in agreement with the known value for monatomic gases. Eq. (16) can also be written according



P. Jenny et al./Journal of Computational Physics 229 (2010) 1077-1098 1081

to the thermal equation of state, i.e. p ¥4 pRT. Here, R ¥ k/m refers to the specific gas constant, which is assumed to be given.
Comparison of p ¥ pRT with Eq. (16) shows that the sensible energy e; is related to the temperature T as
3 3k
es 1/A;ZRTl/j—T 017p
It remains to specify a closure for the deviatoric stress 7; and the heat flux g;. We derive transfer equations for these quan-
tities from Eq. (4) by multiplying with uyuj; (deviatoric part of the tensor u;u;) and § u;uguy, respectively, and integrating over
the velocity space. This yields

40 U U,
a;‘(f’ gaz“’pz 9 '"p2nkh,a Ly 518p

Dn,] an,]Uk
P=ox P
for the stress deviator 7; and
oq; , 0qUx 1 0R; oomy/pb, 5k 0T myom 6 -\ 9U;
8tl a;((k 5 axl: bpial)l;{p 5 mPikox % QJ 8xjk b (mgb g%ibjkb b g5 37: Ya Py 819p

for the heat flux g;. Note, that the left hand sides of these equations are the same for all kinetic models independent of the
collision model. The collision model enters through P; and P;. Following the expressions (12), we write

P Y %nij and P; Y% )%q,‘, 6206

where the relaxation times 7 and the factor 4 have different values for the different models. We have 72
foop/mb !, Tyex, Trp/29 and 4 2 £2/3,1,3/2g for Boltzmann, BGK and Fokker-Planck, respectively. Still, Eqs. (18) and (19)
are not closed, instead, higher order moments of the distribution function occur, namely my; and R;. These have been defined
in a convenient way we will not discuss,' but only state that these quantities vanish in equilibrium, see e.g. [27]. We emphasize
that the closures for 7; and g; are essentially the same for all collision models given above, except for different values of 7, 1and
possibly different evolutions for my and R; by higher moment equations.

The equations for stress (18) and heat flux (19) are typically reduced by an asymptotic expansion, [6,27]. We assume that
in a suitable dimensionless formulation the relaxation time 7 is small 37  1p and write

TV pim P O(?), q;%q; bt g bO(?) 821p

while the equilibrium variables p, U; and T remain non-expanded. This corresponds to a Chapman-Enskog expansion of the
moment equations. Inserting this expansion into the evolution equations and sorting the powers in 7, we immediately find

5]0” Y0 and ql0 %0 as equilibrium values. For the next expansion coefficient we use my %41 m b 067%p and
Rj %1 R‘m b 08%2b, since their equilibrium values vanish. More details on Chapman-Enskog expansions can be found in
the llterature [6,27]. Ultimately, we find

mi ¥ 2ipSjp O8t?p and 822p
5 k. oT
Y S ip=— 2
q; s Zi,mrp ax; b Odt<p 023p
with
1 /9U; , dU; 1 aU,
d y _ s
Si 5 2 <6x, 6x1> 3 ox, ! 624p
for stress and heat flux and can identify the viscosity coefficient y and the heat conductivity x as
. 5k 1.
W¥atp, and Kl/aﬁ = 1p. a25p

This result shows that all collision models above recover the classical fluid dynamical laws of Navier-Stokes (22) and Fourier
(23) in the case of small relaxation times 7. Among the models, differences to Boltzmann occur for the heat conductivity,
which results in different Prandtl numbers

2m p
5k 14
2m/T

Ya 2 026p

pr 1, Py,
K

and hence, for the different models

Mgy 1/4/ uuuFdv,
F\}
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Pz 1/, %, Pr®® 1,1 and P 1/4%. 5270
For most gases, measurements show a more or less constant Prandtl number with a value of 2/3, such that the Boltzmann
collision operator gives the best approximation. A possible Prandtl number correction for the Fokker-Planck model can be
found in [10].

We conclude, that the Fokker-Planck equation (4) with Eq. (10) can be considered as a valid model for non-equilibrium
gases. Especially when the relaxation time is small against the observation time, the Fokker-Planck solution can be expected
to give almost perfect agreement with classical fluid dynamics. Therefore, in this paper we will focus on the Fokker-Planck

model, which will be useful beyond the validity of classical fluid dynamics.
2.4. Stochastic approximation

For the remainder of the paper we will focus on the Fokker-Planck model and write from now on 7 7. In this paper,
the Fokker-Planck equation (4) with Eq. (10) is solved through the stochastic motion

dx; .

1 .

it v, M; with 828p
dMi Lo ppp () FAWer o 5295
a o T 37 dt '

of notional particles, each having a position X and a (molecular) velocity M. Note that the notional particles interact, since
the mean molecular velocity U and the sensible energy e, which appear in Eq. (29), represent statistical moments of the par-
ticle ensemble at the particle location X at time t. The mean velocity U is equivalent to the fluid velocity measured on the
macroscopic fluid dynamic scale according to the ergodic theorem [9]. The force F in Eq. (29) represents the external force in
Eq. (4). According to Eq. (29), the particle velocity is driven by a drift towards the macroscopic gas velocity and a stochastic
noise term governed by the derivative of a Wiener process Wdtb. A Wiener process is a Gaussian process with
dW;oth va Wit b dtb - Width, hdW;dtbi 0 and hdW;dtbdW;dtbi  dtdy. It is important that the loss of sensible energy due to
the drift term is statistically always exactly matched by the gain of e; due to the diffusion term. The correlation time scale
T represents the relaxation time of the Fokker-Planck equation. In comparison with the Boltzmann equation, the appearance
of the first and second right hand side terms in (29) can be seen as the integral effect of molecular interactions, which pro-
duce a continuous sequence of small and almost stochastic velocity changes.

In the limit of infinite particle paths X M*"g ., (« is the particle index) simulated according to Eqs. (28) and (29), the
distribution function of the velocities M* at a space point X converges to the solution F3V, x, tb of the Fokker—Planck equa-
tion (4) with (10); V is the independent velocity sample space variable. Note, that the particle paths are coupled through the
averaged quantities U and e;.

The stochastic model, i.e. Eqs. (28) and (29), and the implied Eqgs. (18) and (19) for the stress tensor 7;X, tp and heat flux
q;0x, tp are unclosed as long as the characteristic time scale 7 % 7 is not defined. In Eq. (25), the relaxation time 7 (note that
here 7 % tgp/2 and for simplicity we write T % Tgp) was related to the viscosity of the gas u by

P

UYa 5 a30p
For gases, it depends only on temperature with a power law of the form
T w
W Ya L <—> a31p
To

with reference temperature T, reference viscosity p, and viscosity exponent 1/2 < < 1. The two extreme values are given
for the case of a gas of hard spheres dw % 1/2p or Maxwell molecules 8w ¥%. 1p. For realistic gases one finds o 0.7—0.8. The
formula (31) is now used to find an explicit expression for 7, i.e.

1
vt (TN, 1 Po (TN
r/42p T /4‘cop To . 032p

The scales Ty and 7o can be determined in the following way. We assume that a characteristic reference length Ly, reference
velocity Uy, Reynolds number Re and Mach number Ma are given for a flow considered. By introducing the speed of sound
do ¥a 8yRTob'/%, the Mach number Ma ¥ U, /d, can be written as

Uo

1/ VRTO

and similarly, for the Reynolds number Re %2 UoLop,/ 14y, ONe finds

Ma Y, 833p
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LO 2
Re Y4y ——Ma". 034p
<7 UoTo
Thus, the knowledge of Ly, Uy, Re and Ma enables the calculation of ey ¥4 3RTy/2 and 7, via Eqgs. (33) and (34).
The inverse relaxation time 7 ! corresponds to the mean collision frequency of the gas particles and, hence, gives rise to a
mean free path /o % daoTo. The Knudsen number /y/L, is the essential scaling parameter in non-equilibrium gases and satis-
fies the following relations

1 79 Ma
1, 1,
KnYa Ma T Ya y Re a35p

with a reference observation time to ¥4 Ly/Uo.

3. Discussion of the model

In this section, the relation of the proposed model to several existing approaches to replace the Boltzmann equation by
simpler stochastic equations are discussed.

3.1. Range of applicability

The Fokker-Planck equation or its stochastic Langevin formulation has been first investigated as a model for molecules by
Kirkwood [14]. Major assumption for this model is a dense state of the molecules interacting on a fast time scale which al-
lows for a stochastic description of the particle dynamics on microscopic scales. This is typically the case for liquids. Simi-
larly, Cercignani [6] derived the Fokker-Planck operator in the limit of an infinite cross section for the particle interaction
which represents a dense gas. Hence, it is necessary to further explain why this paper proposes to use Fokker-Planck as a
model for rarefied gases with larger Knudsen numbers.

While there is not yet a formal mathematical statement about the approximation quality of the Fokker-Planck (10) oper-
ator with respect to the Boltzmann operator (7) we base our argument on a number of observations and investigations.

As shown for example in [17] the velocity distribution function for the Fokker-Planck equation matches well with the
Boltzmann distribution for small Knudsen numbers Kn ¥ 0, i.e., close to equilibrium. Some deviations can be adjusted
by choosing the proper relaxation time trp, but differences remain for example in the value of the Prandtl number. This
indicates that Fokker—Planck is a valid approximation for small Knudsen numbers. On the other hand in the case of large
relaxation times, i.e., Kn ¥ 1, both the Fokker-Planck and Boltzmann equation reduce formally to the collision-less free
flight equation. This suggests that flows with very large Knudsen numbers could also be described by a Fokker-Planck
equation.

The moments obtained from the Fokker-Planck collision operator show a strong resemblance to the moments of the
Boltzmann collision integral. For the second and third moment, this has been demonstrated in the above sections. A
detailed investigation unveils that also higher moments exhibit a linear relaxational form with respect to the correspond-
ing moment of the velocity distribution. This is identical to the linearized Boltzmann operator and the BGK model. Addi-
tionally, the relaxation time of a particular moment is always proportional to the fundamental relaxation time 7 of the
respective model. Assuming that similar behavior of the moments means a similar behavior of the collision operators, Fok-
ker-Planck can be considered as an approximation to at least linearized Boltzmann or BGK.

Numerically the solution algorithm strongly resembles the direct simulation Monte-Carlo (DSMC) method. Essentially the
detailed random calculation of new particle velocities is replaced by a random disturbance based on the respective state of
the gas. This could be viewed as a special molecular interaction.

Altogether, we conclude that the range of Knudsen numbers where the Fokker-Planck model can be applied needs an
extensive investigation, both theoretically and computationally. Our current justification is essentially based on a mathe-
matical comparison with the Boltzmann equation. To some extend we use the Fokker-Planck operator purely as a mathe-
matical or computational tool to approximate Boltzmann equation. First indications for the success of this approach are
demonstrated in computational experiments below.

3.2. Relation to stochastic particle methods

One way is to assume that the position of a particle represents a stochastic diffusion process [3]. However, this assump-
tion is only valid for time steps that are large compared to a characteristic time scale for molecular velocity correlations,
which means one applies a relatively crude model [9]. Hence, this approach has several shortcomings. Macroscopic transport
coefficients are not calculated from the molecular dynamics but they have to be introduced as external variables. Further-
more, due to the fact that the dynamics of velocity fluctuations is only asymptotically described, this analysis has to be lim-
ited to incompressible flows, i.e. corrections to the Navier-Stokes model cannot be obtained.
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A better way to develop stochastic models for the molecular motion is to assume that position and velocity of a particle
represent a stochastic diffusion process similar to the one described by Eqs. (28) and (29), which was pioneered by Kirkwood
[14,15,33,32,17]. Compared to molecular position models, the consideration of a velocity model has the significant advan-
tage that macroscopic transport coefficients may be obtained as a consequence. Nevertheless, there have been a couple of
relevant questions related to the previous use of this approach. First, Kirkwood [14] introduced such a molecular velocity
model as a heuristic model for liquids. In this paper, we start with the Fokker-Planck equation as a simplified model derived
from the Boltzmann equation. On the kinetic level it is possible to rigorously compare the stochastic model with the descrip-
tion of the Boltzmann equation as shown above. Another question is that Kirkwood’s model was applied previously only to
recover the Navier-Stokes model. We have argued that the Fokker-Planck operator can be related to the BGK equation and as
such represents an approximation to Boltzmann’s equation that goes clearly beyond the validity of the Navier-Stokes sys-
tem. For the success of the BGK model see for example [20].

A more general explanation of molecular motion by stochastic models was presented recently by Heinz [9-11]. The ap-
proach applied resulted in a stochastic acceleration model which generalizes Kirkwood’s stochastic velocity model. It allows
to modify the Prandtl number whose wrong prediction is one of the major drawbacks of the standard velocity model. The
combination of the algorithm of the present paper with this advanced model is left for future work.

3.3. Comparison to BGK, Lattice Boltzmann and DSMC

BGK: In many cases numerical simulations of the Boltzmann equation are based on the BGK model introduced above, for
example in [20]. Typically, this still requires to discretize the full three-dimensional velocity space in each grid point to
accommodate the unknown values of the distribution function. The BGK model however significantly simplifies the collision
process. Due to the replacement of the Boltzmann collision operator the BGK equation will only give approximate results.

The new model presented in this paper is similar to BGK in the sense that it replaces the Boltzmann collision operator by a
simpler model, namely Fokker-Planck, but due to the implementation as particle method no discretization of the distribu-
tion function is necessary. The computational complexity of the new method can be compared to BGK when comparing the
number of discretization points for the distribution function in one cell to the average number of particles per cell. While
BGK easily requires 10> 10 discretization points the method of this paper uses as few as 10 particles per cell. However,
when solving BGK, the statistical noise is completely avoided.

Lattice Boltzmann: Many simulations in fluid dynamics are based on the lattice Boltzmann method, for details see for
example the text books [29,31]. In this approach the distribution function is discretized in each space point as well, but with
typically few points, which are strongly linked to the space grid allowing for high efficiency. In general, this limits the flex-
ibility of the distribution function significantly and restricts the applicability to close to isothermal and equilibrium pro-
cesses. This limitation is not given for the current Fokker-Planck model, which at the same time will also be more
expensive than lattice Boltzmann.

Direct Simulation Monte-Carlo: The full Boltzmann equation is often solved by a stochastic particle method (DSMC) de-
scribed by Bird in [5]. It computes the pathes of reference particles similar to the approach of this paper. The macroscopic
fields are computed from particle averages as well. However, collisions are modeled directly as binary interaction of the par-
ticles in each grid cell. The number of collisions are computed from macroscopic relations for the collision frequency and the
collision mechanics follows the Boltzmann collision operator with an appropriate interaction potential.

The current method can be viewed as a modification of DSMC by reducing the binary interaction of the particles to sto-
chastic noise each particle experiences on its path. On the kinetic level this is equivalent to replacing Boltzmann with Fok-
ker-Planck. It increases the efficiency and simplifies the implementation, parallelization, etc. however, at the expense of
physical accuracy. Using the advanced numerical algorithm presented below, the new model also allows for larger time steps
independent from the resolution of the collisions. Issues with stochastic noise will be the same for the new model and DSMC.
Similarly, difficulties due to noise for low Mach number flows can be expected for both methods.

4. Solution algorithm

Here, the numerical solution of Eqgs. (28) and (29) is considered, i.e. an algorithm is presented to accurately solve the
system

dX

Xy

LM, 5365
dM; ) Ton ppp () FAWer o 8375
da o T 37 dt '

for each member of a large set of computational particles (here t ¥4 t%). All these particles have an individual weight w, a
position X and a velocity M. For simplicity, w 1 for the rest of this paper. Note that the weighted particle cloud density
represents the mass density function F3V, x,tb ¥4 pfdV;x, tb, where f3V;x,tb is the probability density function (PDF) of
molecule velocity at location ¥ and time t. As explained earlier, the independent variables V; represent the sample space
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coordinates of the stochastic variables M; and the consistent evolution of F in the x V-space is described by the Fokker—
Planck equation

OF OF 0 1 2 (2e
. . _ . . 1,
S P Vi % b W { [F, Vi UID} F } s WV, {31 F } 338b

However, due to the high dimensionality of the space in which F is defined, it is in general unpractical to solve above equa-
tion with a deterministic continuum approach and therefore particle Monte Carlo methods are preferred. Their computa-
tional cost scales linearly with the sample space dimension and it is an important property for the efficiency of the
presented modeling approach that no individual particle collisions like in other methods have to be considered. The particle
coupling is solely due to the statistical moments U and e;, which appear in the evolution equations. These moments can be
estimated at the nodes of an imposed computational grid, from where they have to be interpolated to the particle positions.
For simplicity, but without loss of generality, here the time scale 7 is assumed to be constant. The solution algorithm can be
outlined as follows: after imposing an appropriate computational grid and after consistent initialization of the particles, n;
time steps are performed, in each of which

(1) U and e, at time t are estimated at each grid node and interpolated to the particle positions,

(2) the time step size At is determined,

(3) a first half-step is performed to estimate the particle mid-points,

(4) mid-point boundary conditions are applied,

(5) U and e at time t p At/2 are interpolated from the grid nodes to the particle mid-point positions,
(6) the new particle velocities and positions are computed and

(7) the boundary conditions are enforced.

Note that in statistical steady state U and e; do not depend on the time, i.e. Udt pp At/2b ¥ Ustp and esdt p At/2b ¥a esdtb, but
if time accurate simulations are of interest, then the above steps 1-7 may need to be performed multiple times to obtain an
accurate estimate of Udt p At/2b and esdt p At/2b at the mid-points. In the following subsections, the individual components
of the algorithm are explained in detail.

4.1. Estimation of statistical moments

To estimate U and e; at the positions of all particles j 2 f1,...,N,qg, first the weighted ensemble averages

S {goxsteMisto |

Ut ¥ A
P {gfaxfatpp}

a39p

and

1 (S {@axiammen Mo}
edxn tb Vs = < -
S {eXaten |

5 Usx, tb Us¥, tb) 340p
are computed for each grid node J 2 f1,...,N,g. Therefore, the kernel functions g/éxp with the property

Nn
d g 1 8x20Q 641p

T

are employed. The same kernel functions are also used to interpolate the statistical moments from the grid nodes to the par-
ticle positions X'atb, i.e.

N _
Uaxia, to i > {glaxiaerousw, tb} 342b

i

and

Nn :
e0XIate, t 4 ) {gféx’étbbesax’ , tp}. 343b

T

Various kernel functions g/8x> may be considered, e.g. classical hat functions with g/éx,p % 5;;, where &' is the location of grid
node I. Since the statistical error of U and e; reduces only with one over the square root of the number of particles per grid
cell, large particle numbers are required. If one is only interested in statistically stationary solutions, however, it is possible
to dramatically reduce the required particle number by applying exponentially weighted moving time averaging [13]. In-
stead of evaluating Us¥/, tb and e,6¥/, tb at time t according to Eqs. (39) and (40), these moments are calculated as
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J
UdN  tb % U-ap 344p
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and
i
esax’,tb%l (ﬂ Ustp lﬂétb). 845p
2 \Watb
The time averaged quantities U/atb, E/6tb and W/8tb are obtained by the expressions
Np . )
Wt v plet Atopol ey {glaxfatpprarp}, 346b
¥l
Np ) ) )
Eatova pElst  Atopol S {gfaxfatDDM’atD Mfarp} and 347p
¥l
Np .
Wt v pwlet  Atbp ol b {gfaxfatpp}, 348p

Al

where 1 240,1 is a memory factor and At the time step size. Note that for p ¥ 0 the expressions (44) and (45) are identical
with (39) and (40), respectively. On the other hand, % 1 1/n, leads to results corresponding to solutions, which were
averaged over roughly the past n, time steps (n, will be referred to as the time averaging factor). These “averaged” solutions
lag temporally behind and if they are employed for the transient phase of the simulation, no time accurate results can be
expected. However, for statistically stationary calculations this exponentially moving time averaging technique with large
n, (e.g. n, 1000) proved to be extremely effective in reducing statistical and deterministic bias errors; see e.g.
[13,12,25]. All the following schemes and test cases are explained for statistically stationary scenarios, for which this time
averaging technique can be applied.

4.2. Particle evolution

To compute velocity and position of a particle at the new time t p At based on the values at time t, the schemes
c? c?
MPY MY (1 e M) (M) U) b Feib\A FhibFRA 649p

XPU XU UAth (M U)T(1 e %) b Bey bl A 850p
——— 2

AXTP1
1

and

are employed, where the superscripts n and n p 1 denote values at the old and new times t and t p At, respectively. At is the
time step size, ¢;; and &,; are independent, normal distributed random variables, and

2e
A%Ts(l e 2AUT), 851p
2
31/42? (g (1 e eAf/f)) and 852p
Cu28Tq e 853p
< .

Note that scheme (50) is used both for the mid-point prediction (then with half the time step At/2 instead of At) and the full
time step. In other words, in order to increase the spatial accuracy, the particles are first evolved in a first half-step according
to Eq. (50) with only half the time step size. Thereby, mean velocity U and the internal energy e; are determined at the old
locations of the particles and for the full time step at the estimated mid-points. It is important that the same random vari-
ables &, and &, are employed for mid-point and full time step predictions. Note that for At ¥ 0 the schemes (49) and (50)
reduce to

MPM T 4e, \ 12 XX
T /4 %(Ml UI) b <ﬁ> Gi pFl and T /AMI

respectively, which are simple, but consistent finite-difference discretizations of Egs. (36) and (37).
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4.2.1. Derivation of the scheme
Next, it is shown that the schemes (49) and (50) are statistically exact for constant U and e, i.e. we prove that for an infi-
nite number of independent realisations the following properties hold for any time step At:

(1) If F; % 0, then mean velocity and internal energy are preserved.
(2) The analytically correct velocity autocorrelation is recovered.

(3) Exact first conditional moments hMP!|M"i and hAX}" ‘M”i are predicted.

(4) Exact second conditional moments hM;P' M;P! )M”i and hAX{P' AXTP! | M"i are predicted.

(5) Exact joint conditional moments hAX}P' M/P! ’M”i are predicted.

For simplicity, but without loss of generality, U; % F; % 0 is assumed for the following derivations, i.e. the solution of

dX;
1

i Y, M; and 854p

dm; ,, M b 465 2 dw b 5555

e dt
is considered. The exact solution of Eq. (54) based on Ito calculus [24] is

p_

MPY v, Mie 2 p " Aéy, 856b

but to derive the coupled solution of X"P! and M™! it is convenient to first write the integration of M from t to t p At as
de; AL\ '
M™'y, Me A7 b i a6 Al kAt /éNb §57p
bl ; “ilzrN) ¢ ’

where ¢, ; are independent, normal distributed random variables. Multiplication with M)’?bl and subsequent averaging leads
to the conditional expectation

N
(MM M) va MiMfe 247 o lim g %e 2L/ 858p

1
Ni1 kvl 3t

Note that all cross products disappear, since h&y ;& ;i ¥4 oy and héy ;i % 0 (6 denotes the Kronecker delta). The last expres-
sion can now be written as

26S

A

<Mnb1Mnb1 ’Mn> Y, MnMn 2At/T b &; 495 / ' e 2/tdt vy, M”M” 2At/T b (] e ZN/T) 359b

Jo
and therefore
Smi
1/2
npl 1, pn, At/T 2eg 24t/7
MP'vuMie “Tp | =2(1 e ) Cm 360p
ﬁ_/

A
is a statistically exact integration scheme for the particle velocity M. Note that &y; is a further normal distributed random
variable. By multiplying Eq. (60) with M®' and subsequent (unconditional) averaging one obtains
hMPTMIPYE Vo hMIM]ie 227" p 2es(1 e 2277) vu ("MIMTi - 2e5)e 2277 p 2, 361p

which shows that the scheme (60) preserves the internal energy
n ns
e % 8620
independent of the time step size At, which is not the case for a simple finite-difference type integration scheme. Moreover,
by multiplying scheme (60) with M} and subsequent (unconditional) averaging one obtains
hMIPT M

1, At/T b
MM C 563

which is the analytically correct correlation coefficient.
Next, a similar approach is employed to derive an exact particle position scheme. Therefore, the integration of the particle
velocity (57) is performed, which leads to the particle position X at the new time t p At, i.e.

npl 1, ynbl n1 agn At/t O, (e AR\'? kAt /8NTp
AXPPy XTPL O XPyaMPT(1 e )pblln!nizg 3 ) T e ). 964b
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After multiplication with AXJ’-”” one obtains the conditional expectation

N
AXIPTAXTPTIM™) v MIMIT2 (1 e 207) p 6 lim de; Atrz(l e kAU/NT)?, 865b
P i N1 £ 37
372

which can be written as

At

(AXPTAXP M) v MIM] T (1 e 477 p oy @r/ (1 2eY"pe 2/)dt

VMM (1 e 27) poy 2es (@ (1 ed9(3 e Af/f)). 5660

This leads to the integration scheme
SX.i
12
2
AXPU Y MIT(1 e M) p 29%(% (1 e™)(3 e Af/f)) Exi 867p
B

which together with Eq. (60) is exact provided the two normal distributed random variables &y ; and &y, ; are correctly cor-
related. To achieve this, we now derive the correlation of velocity and dislocation. Therefore we multiply Eq. (57) with Eq.
(64) and take the conditional expectation, which leads to

<M,{1b1AX]T_1b1jMn> Y, M?M}]T(e At/t 2At/r b 5 llm Z 465 At kAt/aNzD e 2kAt/aNrb)

Y, M?M}]T(e At/T 2At/r) bb %/ ( t/t e 2t/r)dt
0
265 (1 e, 368

—,_/
C

The remaining task consists in correctly correlating the stochastic terms in Eqs. (60) and (67), such that Eq. (68) is honored.
This can be achieved for example by replacing Sy; and Sx; with

%M?M;T(e At/T e ZA[/T) b5

o 12 o\ 172
C C
Sy Ya () &ib (A ) & and 3690
’ B ' B
Ski Ya0BP' 2y, 5700
respectively, where the normal distributed random variables ¢;; and &,; are independent. Note that
WSy Sl ¥4 hSuiSwmyi ¥4 05A  and 871p
hS 1Sk ji ¥a hSxiSx i ¥a 0B, 872p
but in addition also
Sy Sy ji ¥ C 873p

is ensured, which s the correct covariance. It can easily be verified that all terms are real,i.e.C?*/B > 0, A C?/B > 0andB > 0
With this it has been shown that the combined exact schemes

2 2
MU MY (1 eAt/f)Mypw%g“m/A %c“z_i and 674p

P—
AX?P' vaMiT(1 e 2% b Béy; §75p

fulfill the properties listed at the beginning of this subsection. Note that Egs. (49) and (50) represent the generalization of the
exact schemes (74) and (75) for U;#0+=F;.

4.2.2. Validation of the scheme
For illustration, next the superiority of the schemes (74) and (75) compared with the commonly used ones

1/2
MPt My 1/4{ EM“p(‘fSAt) 5,} {1 %} and §76b
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is demonstrated. To keep the statistical error small, 10° independent particles were employed in each of the following
numerical experiments.

In the first test case, the velocity distribution of the ensemble at t' % t/7 % 0 is multivariate Gaussian and isotropic with
es ¥a 1Tm?s 2. Note that e, in Egs. (74) and (76) is extracted from the ensemble at the beginning of every time step. Fig. 1(a)
shows e, as a function of time computed with the common schemes (76) and (77) using different time step sizes. Even for the
smallest time steps one can observe a significant decay of e; and the energy loss rate certainly becomes inacceptable for
At > 7/16. On the other hand, with the new exact scheme, no deterministic energy error can be observed (Fig. 1(b)), even
for time steps as large as 10t. With the second test case, the accuracy of conditional ensemble statistics as a function of
the time step size is investigated. This time, all particles have the same initial velocity Mét ¥, 0 ¥ 81,0,00"m/s and e; is trea-
ted as a constant coefficient with a value of 1m?/s 2. Figs. 2 and 3 show the first conditional moments hX;dtPjMat ¥ Opi and
hM 8tpjMot ¥a OPi, respectively. The left plots represent results obtained with the common schemes (76) and (77). Both con-
ditional first moments show significant errors for At > t/2 (the solution with At ¥ 7/16 serves as a reference). With the new
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Fig. 1. e, for t/T 240,100 with the common scheme (left) and with the new exact scheme (right). For both schemes, different time steps were employed, i.e.
At 2 f1/32,1/16,7/8,1/4, /29 for the common scheme and At 2 27, 107g for the new exact scheme.
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Fig. 2. hX;jMat ¥4 Opi for t/t 240,10 with the common scheme (left) and with the new exact scheme (right). For both schemes, different time steps were
employed, i.e. At 2 ft/16,t/4,7/2, 19 for the common scheme and At 2 ft/16,1/2, 1,219 for the new exact scheme.
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Fig. 3. hM;jMat ¥ Opi for t/t 240,10 with the common scheme (left) and with the new exact scheme (right). For both schemes, different time steps were
employed, i.e. At 2 ft/16,1/4,7/2,1g for the common scheme and At 2 ft/16,1/2, 1,219 for the new exact scheme.
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exact scheme, on the other hand, no deterministic error can be detected (Figs. 2 and 3(b)); even not for At % 27. The same can
be stated for the second conditional moments hX;8tPX6tbjM&t ¥ Opi, hM,3tbM;3thjMat ¥ Obi and hX;3tbM;3thjMdt Vs Obi, which
are depicted in Figs. 4-6, respectively.

4.3. Boundary conditions

Periodic-, open- and wall-boundary conditions are considered here. In each case, one first has to determine the intersec-
tion x"" of the computed particle trajectory with the boundary and the boundary unit normal vector n at ¥™¢" pointing out
of the domain.

To explain the implementation of periodic boundary conditions, a periodic domain Q of length jrj in the periodic direction
is considered. The corrected position of a particle j, which left the domain across such a boundary, becomes

Xg“™ r ifr n>o0,

ijgcorr 1 . ol
Xg“““pr else.

a78p
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Fig. 4. hX,X,jMat ¥4 Opi for t/7 240,10 with the common scheme (left) and with the new exact scheme (right). For both schemes, different time steps were
employed, i.e. At 2 f1/16,7/4,7/2,1g for the common scheme and At 2 ft/16,7/2, 7,219 for the new exact scheme.
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Fig. 5. hM;M,jM@t ¥, Opi for ¢/t 2 40,10 with the common scheme (left) and with the new exact scheme (right). For both schemes, different time steps were
employed, i.e. At 2 f1/16,7/4,7/2,1g for the common scheme and At 2 ft/16,7/2, 7,219 for the new exact scheme.
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Fig. 6. hX; M;jMat ¥ Opi for t/T 2 40,10 with the common scheme (left) and with the new exact scheme (right). For both schemes, different time steps were
employed, i.e. At 2 ft/16,1/4,7/2,1g for the common scheme and At 2 ft/16,1/2, 7,219 for the new exact scheme.
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To treat open boundaries (in- and outflow), buffer regions are introduced, which have to be consistently populated with new
particles at the beginning of each time step. Note that mass balance errors might occur, if the buffer region is not wide en-
ough. This problem is avoided, if the more sophisticated in- and outflow boundary condition formulation by Meyer and Jenny
[19] is employed. Note that particles which leave the domain Q through open boundaries are deleted at the end of each time
step.

More delicate is the treatment of wall-boundaries. While this is an interesting and challenging topic on its own, we
emphasize that no attempt is made here to improve existing approaches. For the studies shown in this paper, isothermal
walls are considered and a method which ensures exact mass balance is employed. The wall is treated as an interface be-
tween the computational and a virtual domain, in which the marginal distribution of each molecular velocity component is

1 4
Ay, _ __ex — . 5790
S e 2 &P ( 2kTW“"/m>

The wall-normal velocity distribution of the molecules crossing the wall interface from the virtual into the computational
domain is

Hs VbV 1 %
normal 1, ntvn ex n , 80p
] 82k /mp' 2 p( 2kT‘”’“"/m>

where Hd b is the Heaviside function and 1/Q a normalization factor to ensure that the integration of f*™ over the whole
V.-space is identical one. Note that velocities with a negative wall-normal component are directed into the computational
domain. The distributions f™™a and f* are depicted in Fig. 7. Now, the treatment of isothermal walls is straight forward: as
soon as a computational particle crosses an isothermal wall interface, a new random velocity is assigned to it, where the dis-
tributions fw and frema are applied for the tangential and normal components, respectively. Location and time of collision
with the wall, i.e. ™" and t"", respectively, are estimated based on linear interpolation. The particle position is then set
equal to x™ and a new velocity is assigned as described above. For the remaining part of the time step, i.e. for
Atremaining 1/, gnbl - ginter yyhere %P1 js the time at the end of the current time step, the schemes (49) and (50) are applied
to compute the new particle position and velocity.

4.4. Comparison to DSMC

DSMC implements the free flight of the particles and the collisions in a fully decoupled way. Over a given time step the
particles are moved according to their velocities and in between time steps collisions are simulated with particles staying in
place. Typically, the computational domain is covered by a mesh whose cells accommodate a fluctuating number of particles.
The particles in each cell are used to obtain averaged values for continuum quantities like density and temperature on the
computational mesh. These macroscopic values are also used in determining the characteristics of the particle collisions in
each mesh cell. The collisions are conducted pair-wise after selecting two particles per cell at random with a certain accep-
tance rate. The new velocities are produced according to an interaction model like hard spheres where the scattering angle is
again chosen at random or on the basis of a randomized function.

The stochastic algorithm described above also requires macroscopic fields to be computed and updated time-stepwise on
a computational mesh. The main differences to DSMC are the treatment of collisions and the coupling of transport and col-
lisions over one time step. Both concepts increase the efficiency of the new method over DSMC. At the same time the new
method lacks some of the physical ingredients of DSMC and can be expected to produce less accurate quantitative results.

—f normal

0.7 __,fwall

0.1 L
-5 0 5

Fig. 7. Marginal PDF’s fromal and f*a! of the wall-normal and wall-tangential velocity components.



First, the effect of collisions is reduced to stochastic noise on the particle’s velocity. This means that the only coupling of
the particles is within the averaging to obtain the macroscopic fields. The actual collisions are operations on single particles
without complicated pair interaction and scattering calculations. In this way only two (or four, for second order accuracy)
random numbers are necessary per particles and time step independent of density and Knudsen number. In DSMC colli-
sion-dominated flow regimes close to equilibrium typically slow down the computation. Note that DSMC is reported to have

a computational complexity of the order O3Kn *p, see [1]
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Fig. 8. 7/1? as a function of the Knudsen number Kn obtained with the linearized Boltzmann model, the Fokker-Planck model and Navier-Stokes.

(for details see also [6]), tends to overpredict the experimental data for Kn > 1, while the Fokker-Planck model predictions
are in good agreement with the experiments for the measured Knudsen number range from 0.1 to approximately 5. To which
extent the discrepancy between the Fokker-Planck and the linearized Boltzmann results are due to the boundary conditions
remains to be investigated. It has to be mentioned, however, that the joint PDF of the wall-parallel and wall-normal velocity
components can be far from Gaussian at large Knudsen numbers. Fig. 9 shows that this can be represented by the Fokker—
Planck model. Shown are the joint PDFs of M; ¥4 My /8LoF /ummsb and M, ¥a M /8LoF /upmsb at X1 ¥ 0 and x; ¥ Ly/2 obtained for
Kn ¥, 0.044 and Kn % 5.3. While the joint PDF is close to equilibrium (Maxwell distributiuon) for Kn % 0.044, it attains a
complex shape for Kn % 5.3. Interesting is the observation at x; ¥4 0 (wall), where M, conditional on positive M;-values
(molecules moving away from the wall) follows a Maxwell distribution with zero mean. This is not the case for the PDF
of M, conditional on negative M;-values (molecules moving towards the wall).

30 30

Fig. 9. Joint PDFs of M, and M, at x; % 0 (left) and x; ¥ Lo /2 (right) for Kn ¥: 0.044 (top) and Kn ¥ 5.3 (bottom).
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For the own simulations the driving acceleration was adjusted to keep the Mach number

Ma Ya J a86p
PodoLo
below 0.3. Moreover, a uniformly spaced, Cartesian 2D grid with 32 1 cells and 10 particles per cell (in average) were em-
ployed. At the top and bottom of the domain, periodic boundary conditions were applied and at the left and right boundaries
isothermal walls were considered. Steady state solutions for Knudsen numbers from 0.04 to 20.0 were computed and to re-
duce the statistical and bias errors, exponentially weighted time averaging was applied (which has the same effect as
increasing the number of particles). The time step size At was determined according to a CFL condition as

At ¥4 0.5 h , a87p
rms
where h is the grid spacing. Note that much of the discrepancy between the Navier-Stokes and the other results is due to the
slip boundary conditions, which are enforced in the Navier-Stokes simulations, but not for the Fokker-Planck and linearized
Boltzmann calculations (there the slip velocity is an outcome of the simulation). How the slip velocity increases with the
Knudsen number can observed in Fig. 10, which shows the velocity profiles (normalized with Jp,'L,") for
Kn ¥,0.044, Kn ¥ 0.71 and Kn ¥ 5.3 (computed with the Fokker-Planck model). Fig. 11 shows a more detailed comparison
between the Fokker-Planck model and DSMC for Kn % 0.072. Depicted are the profiles of the normalized quantities
U, ¥a Uy JOLoF U, Tyy Va Tlyz U2, Ty Ya T JU2., T VaT/T*™ q, Yaq, /13, and q, ¥aq,/u3,,, where LoF/u2, vs0.235.
While velocity and molecular stresses are in excellent agreement, there exist differences in the temperature and heat flux
profiles. Such discrepancies have to be expected due to the disagreement of the Prandtl numbers (as discussed earlier). Qual-
itatively, however, the temperature and heat flux profiles depict the same characteristics. Note for example that Navier-
Stokes cannot predict the local temperature minimum in the center of the channel nor the non-zero values of q, and 7;;.
The dependence on grid resolution is shown in Table 1, where the values of J/J*"**® for Kn ¥, 5.3 resulting from simu-
lations with the new method on grids with 64, 32, 16, 8 and 4 cells are shown (here, J*"*"* represents the value obtained for
a grid with 64 cells). An asymptotic analysis of the solutions obtained with the finest three grids leads to the conclusion that
the spatial discretization error is of at least second order. It is interesting that the solution obtained with a grid consisting of
only 4 cells differs from the one with 64 cells by less than 6%. Moreover, for Kn ¥, 5.3 with a grid consisting of 32 cells, one
simulation with half the time step size and another one with twice the number of particles per cell were performed. The
differences between the three values off/l? are of the same order as the statistical error, which confirms that the time step
size At ¥ 0.5h/u,ms i